
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19690020051 2018-07-26T10:10:43+00:00Z



A	 w

Estimation of Object Parameters by a

Quantum-Limited Optical System

Carl W. Helstrom

Department of Applied Physics and Information Science

University of California, San Diego; La Jolla, Calif. 92037

Abstract

By means of the quantum-mechanical form of the Cramer-

Rao inequality, a lower bound is set to the mean-square error

in an unbiased estimate of a parameter of an incoherently

radiating object observed in the presence of thermal back-

ground light by an optical system'admitting light through a

finite aperture. Estimates of absolute radiance, frequency,

and position of the object are specifically analyzed. The

bounds reduce in the classical limit to those previously

obtained, but are valid in the quantum limit as well. When

the background vanishes, the bounds depend only weakly on

the effective number of independent spatial and temporal

degrees of freedom of the object light at the aperture.
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An optical instrument such as a camera or telescope not only

detects objects in its field of view, but also facilitates measuring

certain of their parameters. 'Typical parameters are the absolute radi-

ance of an object, its diameter, the coordinates of its center, and--

if its light is quasimonochromatic--its frequency or wavelength.

1,stimates of parameters are always subject to random and systematic

errors. If measurements are made on images recorded on photographic

film, the granularity of the film and inaccuracies in specifying its

H-U curves introduce error. When photosensitive surfaces are used, as

in image intensifiers, emission fluctuations and dark currents create

random noise. Many of these causes of error might in principle be elim-

inated, bait one will always remain, the stochastic nature of the inci-

dent light itself.

The insurmountable error due to the stochastic properties of

light can be assessed by regarding an optical instrument as processing

the electromagnetic field at its aperture. We envision the class of

all possible instruments that might analyze that field and produce an

estimate of the parameter in question. The methods of statistics permit

us to calculate a lower bound to the mean-square error in an unbiased

estimate of a parameter in terms of the probability distributions of the

incident light field. This has already been done for incoherent objects

whose light is received in the presence of strong enough background

light so that the net field can be treated by the methods of classical

electromagnetism. 
1 

1 2 The bound was based on the Cramer-Rao inequality

of conventional statistics.

X
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here we shall derive: corresponding lower bounds that apply when

the 'light is so woak that the quwiturii-mechanical properties of the field

must be taken into account. The accuracy of parameter estimates is now

limited by the quantwtt fluctuations arising from the photonic nature of

the light from the object and the background.

The smne conditions will be postulated as in our analysis of the

detectability of incoherent objects by a quantum-limited optical system.3

The light field at the aperture of the optical instrument is observed

for a time T much longer them the reciprocal W_ 1 of the bandwidth of

the object light. The diameter of the aperture is much greater than

both a wavelength of the object light and the correlation length of the

thermal background light. The bandwidth of the background light is much

greater than that of the light from the object.

Section I will review the specification of the fields clue to ob-

ject and background. The notation is the same as in III. 3 In Section

II the quantwn-mechanical form of the Cramer-Rao inequality, is used to

derive a general formula for the lower bound on the mean-square error in

an unbiased estimate of a parameter. 495 Section III treats parameter

estimation when the object light is spatially incoherent at the aperture;

Section IV takes the object light as having complete first-order coher-

ence. Estimates of the absolute radiance of an object, its frequency,

and its position are analyzed. Section V deals specifically with estimates

of radiance and frequency 'of a uniform circular object whose light is

received at a circular aperture.

f '...

i
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I. The Aperture Field

The electromagnetic field, taken for simplicity as a scalar, is

represented by the function ^(r', t) of coordinates r' = (r, z)

and time t . Here r is a 2-vector of coordinates in a plane parallel

to the aperture and normal to the z-axis, which points toward the object.

The field is decomposed into its positive- and negative-frequency parts,

(r' t t) = '^. W, t) + ^_ (r' , t)	 (1.1)

which are hermitian-conjugate quantum-mechanical operators. The mutual

coherence function of the field is defined by
1

(r^, t l ; r2, t 2 ; e)	 Tr pt^ - (r2, t 2 ) *+ (rl, t l )	 (1.2)

where p = p (e) is its quantum-mechanical density operator and "Tr"

stands for the trace. The density operator and the mutual coherence

function depend on the parameter e to be estimated.

Onto the aperture falls light both from the background and from

an incoherent object whose parameter a is the estmandum. As the ob-

ject and background radiate independently, the mutual coherence function

in Eq. (1.2) is the sum of two corresponding terms,

Y (rl' tl ' r2' t2 ' 
e)	 yo (rl' tl ' r2' t2)

+ ( r',
 (r l' ti ' r2' t

2	 e).	 (l•)

(Henceforth the subscript 0 refers to the background, s to the

object light, or "signal".) The object is assumed to lie in the plane

z = R , far away in the z-direction; as a result, the mutual coherence

function of its light has, at the aperture, the form
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YS (r1,t1 ; rr2, t2 ;U)
ys (r , t i ; r , t; ; ) exp _'ts (t i -t 2) - ise (z i -Z 2 ) / c],(1.4)

where s is the central angular frequency of its spectrum and c is

the velocity of light.

Because the light from the object is a stationary stochastic

process, ys is a function of t 1 
and 

t2 
only through t 1 - t2

and it can be expressed in terms of its Fourier transfonii as

W5 ( r i , t i	 r2, i2

00

4)s (r i , r 2	 w ; 0) exp [—iw (t i - t2 ) ] dw / 2 7T	 (1.5)

00

Under the asswnptioii that the object light is cross-spectrally pure, the

transform ^S can be decomposed into a spatial and a temporal part,6

(P
S 

(r 
I' 

r2 ; w ; 0) = YS 
(r 1 , r2 ; 0) X (w ; 0),I	 (1.6)

where the angular frequency w is measured from n . The temporal spectral

density X (w ; 0) is so normalized that

0

X (w ; 0) dw / 2Tr = 1	 (1.7)

The bandwidth W cf the object spectrum is define" by

W = {	 j X (w ; 0 ) ] 2 dw / 2Tr 
}-1	

(1.8)
_0

--cf. I, Eq. (1.5). The total energy received from the object during

the observation interval is

ES = 252 2 cT	
YS 

(r, r	 0) der 3,(1.9)

A

where A stands for the aperture of the optical instrument.

}Fi-

5
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The background light, on the other hand, is taken to have the

pro
perties of thermal light of absolute temperature T . Ille average

number X of photons per mode of the field is given by the Planck

formula,

(exp 0 Q / KT) - 11 -1 (1.10)

where 0 is the frequency of the mode, K is Boltzmann's constant, and

-h is Planck's constant h / 2ff
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II. The Quantum-Mechanical CramEr-Rao Inequality

In order to set a lower bound to the accuracy with which the para-

meter a can be estimated, we suppose the optical instrument replaced

by an ideal receiver, which consists of a Large lossless cavity having

the same aperture. 7 The cavity is initially closed and empty. During

the observation interval (0 , T) , the aperture is opened and the inci-

dent light allowed to enter the cavity. At time t = T the aperture is

closed, and at some time t thereafter, the best possible measurements

are made of the field within the receiver. The field at that time is

described by a density operator p(e) depending on the estimandum e

Once again we specify the field in the receiver in terms of its

normal modes	 um (r)	 exp (-iwm0 ; the functions um (r) are solutionsN
of the Helmholtz equation corresponding to angular frequency	

w 
	 --see

III, Eq.	 (3.11).	 The amplitudes of the modes are, as before, the oper-

ators	 a^	 so normalized that their commutation relations area

+	 +
ak	

a	
] = a
	 a

M	
k	 m

+
- a	

am	
k = Skm

[ak ' am]	 [ak	 am } = 0
(2.1)

These mode amplitudes are linearly related to the field at the aperture

during the interval (0 , T)

am	 () (1) ^ (ri , t l )	 ,

am+ 
= 0M *(1) 	 t l )
	

(2.2)

where Om(1) is the integro-differential operator defined in III, Eq.

(3.21) .

ss.	 ....	 T,.a.v ,..'	 ,^	 ti°u. ..emu,.- .. S	 a''r^Tt_^^^"`'•
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Both the background 
and 

the object consist of a myriad of indepen-

dently and randomly radluting ions and electrons. The density operator

of the field they generate, therefore, has 
in 

the P -representation a

gaussian form specified by the correlation matrix 9

Y(0) = go + Y (U)P14	 -	 -S

of the amplitudes of the normal modes. Its elements are

Ykm 
(0) - Tr(p(0) -a M + a 

k ]	 (2.3)

which are bilinearly related, through 
the 

operators 0k (1)  9 0  *(2) 0

	to the mutual coherence function Y(r' 	 t	 r ' V t	 0) of the field

	

- 1 	 1	 ^2	 2

at the aperture during the interval (0 T).

A lower bound to the moan-square error in 
an unbiased estimate 0

of the parameter 0 is set by the quantum-mechanical counterpart of the

Cramer-Rao inequality, 4

E(e - 0) 2 a (Tr pL 
2 ] -1 = (Tr(L dp	 H)1_	 (2.4)

where E stands for expectation and L is the symmetrized logarithmic

	

derivative of p(0) with respect to a	 defined by

2 Dp / 30 = pL + Lp	 (2.5)

The derivatives are evaluated at the true value of the estimandum.

When the gaussian form of the density operator p(e) is used, the

inequality becomes 5

(e	 0) 2 -4: A
e - 

1	
(2.6)

Ae	 Tr [A (DYS / De)]	 (2.7)

where A is the solution of the matrix equation

2Dy	 38 = yA	 + y) + (I + y) A e 	(2.8)_ S	 l
I being the identity matrix. It is convenient to put
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where

H(01 f 2 ) = Tr LO 1 )YOd	 (2.10)

corresponds to the wilb luibty function of signal estimation theory.10

Here L(O	 is the solution of the matrix equation

2 Ts ( 0 1 ) - Y(J) z ( 0 1 ) (1 + T(0)l +

(x + Y(o)) Vo l ) Y(U)	 (2.11)

and A	 is OL (O 	i J6 evaluated at 0
1	

J

It is now necessary to translate this prescription into a form

involving the mutual coherence functions of the field at the aperture of

the observing instrument. The analysis is much like that in III, Sections

III and IV, and it is given in Appendix A. As in III, it is asstmied

that the bandwidth W of the object light is much smai,^Lr than that of

the background light, K 2' / n. In addition, the diameter a of the

aperture is much greater than both a wavelength 2frc / Q = 27T / k of

the object light and the correlation length -hc / 1s7 of the thermal.

field. 11 The condition a »Xic / K7 is equivalent to ka » lSt / K 

and -ka » 1 . It is only at very low temperatures that fist / KT be-

comes comparable with ka , and Eq. (1.10) shows that the average num-

ber X(P) of thermal photons per mode is thereupon exponentially

small, so that whatever correlation the thermal background field may

have will be inconsequential.

The result of our translation is most conveniently expressed in

terms of the orthonormal set of eigenfunctions n k(r) of the integral

equation

vk nk (r 1 ) _ (2QcT / Vii)	 ^s(r1, r2 ; 6)nk (r2 ) d r?	 ,	 (2.12)

JA
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whose cigenvalues ,k are puro nwiibers. lht functions

1 1, 2 arc, expands  in a duublv sorles of these eigonfunctions,

Y S 
(r i r	 i)	 kin i

x I ( r 1	 tj in*(r,,)	 (2.13)
k. 1 

and when V	 as in III, Eq. (A".i
11
km 
0)	

k "skin *	
(2.14)

The ambiguity function H (ij	 then bo-comes
-I

H(0 1 0 G4	T
 "kin(d 1'mk ( ",,! ) X(w	

X(W	 0
01 	 2k-1 in-1 4.c.

(dV +	 + ^, X(w ; 0) T -1 1 	 dw	 2 ,nX j ( N+ + vkX(w, ; U) T

	

	
4In

(2.15)

as shotoi in Appendix A. 
In 

exceptional cases it may N. 'possible to solve

the integral equation (All) wid ovaluate th-- mibiguity function by Eq.

(Al2).

If there are several parameters (U P 00)	 U ) = 0 to be4^	 n

estimated at the,  same time, or if only one is to be estimated when the

rest are tuibm.,own, generalized forms of the Crzzier-Rao inequality l2j13

and its quantLuii counterpart s apply. The resultji l-g bcunds are best

described in terms of the concentration ellipsok., whose , matrix can be

derived from the ambiguity function H(O j , 0 2 ) , defined as in Eq.(2.15),

but with 0 1 and 0 replaced by the sets of parameters 0 1 and e
2 

The method of specifying the bounds is straightforward and has been

described elseMiere.
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The Classical Unit

The sun of the vigenvalues of the integral equation (2.12) is 14

)'	 _	 _
^^k 	NS 	 LS / ^s4	 (2.16)k	 ,

where NS is the average nuanber of photons receive(! from the object

during (o , T) . When the object light possesses complete first-order

spatial coherence at the aperture, v j = N
S 

and v  = 0, k > 1 . When,

on the other hand, the object light has only slight spatial coherence,

a rough approxiination Nets the m 1-argest eigenvalues equal to

v = NS / M and the rest equal to z ̂ro, where 14

r	 2 2	 2 Z	 2	 1
M	 f	 Y J (r, r; C)	 r 1 L
 ff Q (r l , r2 ; 8)	 d r l d r2

A 	 J	 A

= -z	 (2.17)

with	 the spatial factor for detection, defined by I, Eq. (3.8).

In the classical limit, K7' >> hdQ and X >> 1 	 For object

light providing an effective signal-to-noise ratio of the order of 1--
1

see III, Eq. (5.13) --, NS is of the order of JV(MWT)2	 Since the

spectral density ,X(w ; 8) is of the order of 
W"	

the terms

V  R(w ; e) T-1 in Eq. (2.15) will be of the order of 14S / MWT
1

	

Jir(MWT) 2 << -M when MWT >> 1	 For objects of moderate detectability,

therefore, we can set the-bracket in Eq. (2.15) equal to ,N"' . The

double summation can then be evaluated by using Eq. (2.13) and the

ortnonormality of the eigenfunctions T1 (r) to obtain the ambiguity
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H(e 1 , 0) = (N /JV' )2 
T-1

CO

X	 S(^-	 r^; w ; ^ 1 ) (Ps (r^, r 1 ; w	 8^) d ? r 1 d 2 r2 (dw / 2ff

AA

X [	 ys 
(r, r	 Q) d2 r,	 (2.18)

A

When this is used in Eqs. (2.6) and (2.9), the same lower bound is ob-

tained as in 1, Section VT for the mean-square error in an unbiased

estimate of a parameter © of an object by a background-limited optical

system. 15
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111. Estimation with Low Spatial Coherence

Turning now to the cstimation of object parameters under a quantum

litaitation, we first consider object light with a low degree of spatial

coherence at the aperture, and we work out a rough approximation to the

ambiguity, function H(e 1 , 0 2 ) . The number m of effectively indepen-

dent spatial degrees of freedom is now large, and the first M eigen-

values 
v 
	 can be ,,,et equal to v = NS / 11 in Eq. (2.15) . With m >> 1,

the double suit can again be evaluated as in Eq. (2.13), and we obtain

110 1 	,	 8 2 ) =

N
2 T-1 

ff
cpS(rl'	 r2	 '	81) ys(r2,	 rl	 82)	 d2 rl d2 r2

S
AA

X X(w	 ; e l ) X(w	 8 2 )	 {C/^'+	 + NS X(w 	; 6) M - 1 T -1 ] 2 - -14}	 (dw /	 27r)2
_CO

X	 cps (r,

-2
r	 0) d2 r] (3.1)

A

When quantum limitations are significant, 	 ,N'« 1 but	 N and,	
s

JYMWT	 may be of the order of 1, with	 NS / IMWT	 of the order of Al'

and very small. 
14

Eq.	 (3.1) can then be simplified to read

H(e 1 , e 2 ) =

NSM.UW
J `

ps(r 1P r2 ; e1) Ys ( r2 , r1 ; 6 2 ) d2 r 1 d2 
r2

AA
OJ	

— 1
X	 X(w ; e 1 ) X(w	 e2) [ l + UWX(w	 e) ]	 (dw / 27r)

X	 2	 2(r, r	 6) rd r,S	 N
A

where
NS l JY MWT

(3.2)

(3.3)
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For estimates of parameters U , such as absolute radiance and

position, that do not enter the spectral density X(w ; 0) = X(W) , the

lower bounds on the mean-square error derived from Eq. (3.2) have the

sane form as those obtained in 1, Section VI, except that the ratio

(N / B) must be replaced by [NS MWT f 1 („^') ! ^2 , where the function

W	
2	 +1

f 1 (oD) _ J7 	 [X(W) ] [1 + ZWX(w) I	 dw / 2fr	 (3.4)

depends on the form of the spectral density of the object light. For

Z<< 1 , f (17)	 and (N / E) is replaced by ,/►/' 1/2 / Ns	 For1 

Z >>1 , f 1	 In particular, for an estimate of the absolute

radiance Bo of the object,

^ (B _ - B 
o ) 

i B 
o z [I3 s f (^') ^ 1	 (3.5)u	 1

which becomes independent of the number MWT of spatial and temporal

degrees of freedom when the background vanishes ( Ar= 0)

Mien the object spectrum has a rectangular form,

X(W) = W-1 , (WI < Uw ; X(W) = 0, 	 IWI > 7w ,

f 1(D) = -'/ (-a + 1) ,

which is plotted as a dashed curve in Fig. 1.

X(w) = 2W( w2 4- 
w2) -1

it is Lorentz.

(3.6)

For a Lorentz spectrum,

(3.7)
1	 1	 _

	

f  (JB) = 2.6 ;1 + 2.b') 2 [ 1 + (1 + 2.U)2	 1	 (3.8)

which is plotted as a solid curve in Fig. 1. The minimum mean-square

orror attainable is smaller when the spectrum is rectangular than when

Y
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Esthiiation of Frequency

In spectroscopy it may be necessary to measure the central fre-

quency or wavelength of a weak spectral line. This corresponds to esti-

mating the location w o of the spectral density X(w ; w o ) X(w - wo)

According to Eqs. (2.6), (2.9), and (3.2), the relative mean-square

error of an unbiased estimate (Z O is bounded by

E(w - wo) 2 / W2 	[Nsf 2 (-Cr) -1	 (3.9)

where

f 2 .D1 W 3	 [X' (w ) ] 2 [ 1 + .cam wX(w) ] - dw / 2Tr ,	 (3. 10)
-0

the prime denoting differentiation with respect to w

For the Lorentz spectrum 3n Eq. (3.7) this is
-3

f 2 („8) 	 [3 + (1 + 2.09) 2 ] [1 + (1 + 2.8') 2 ]	 ,	 (3.11)

which is plotted in Fig. 1. For	 << 1 , f 2 (.j = Or/ 2	 for Z>>1,

f2 (.8) 2	 The corresponding bound in the classical limit jY>> 1 is

E(w o - w 0 ) 2 /W2 ^ 2	
/NS)2 MWT ,
	 (3.12)

where NS /,ff = E/N, M = 31' 2 in the notation of I

The lower bounds on the mean-square errors in the estimates of both

absolute radiance B o and frequency w o become independent of the num-

ber MWT of spatial and temporal degrees of freedom when the background

vanishes (JV 0). As there may be some question about the limit pro-

cesses involved, an independent derivation is presented in Appendix B,

where it is shown that these results are valid when MWT >> N
S
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Estimation of Position

For the estimates of the coordinates (e x , e y ) of the center of

a uniformly radiating object of radius b , the mean-square error is

subject in the classical Limit to the lower bound

E( X 	 ex)2/62 z 2(Ar/NS ) 2 TW[v(a)]-^

a	 b/d , 6 = R/ka ,	 (3.13)

vhere 1)(a) is given in I, Eq. (6.5), and a is the radius of the

circular aperture. For a >>1 the integral there can be approximated

to yield

`v(a)	 64/3ff a3 .	 (3.14)

By I, Eq. (3.10), on the other hand, the number M of independent

spatial degrees of freedom is, for a >>1 , given by 16

2 = M  =	 24/a 	 (3.15)

Hence the classical bound is

E(eX - EX)2 /S2 Z ,-^, (AlINS ) 2 TWM Z .	 (3.16)

In the Quantum limit, therefore, for M >> 1

E(£x - E X ) 2/S2	
4^2 [Ns f 1 (.1J) ] _ 1 M 2 ,	 (3.17)

which in the limit JV' 0, .5 = 1 depends weakly on the number M of

independent spatial degrees of freedom, and not at all on WT
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IV. Estimation with First-Order Coherence

Mien the object is a point source; far from the aperture, its light

upon reaching the aperture will possess first-order spatial coherence.

Let a source of total radiant power B 0 be located at the point (e , R) .

At the aperture its light will have a mutual colerence function whose

spatial part is

Ys (r l , r 2	 -) = (hN
s
/2QcTA) e(r l , c) e*(r 2 , E)	 (4.1)

with

e (r , e) = exp(iklr - E1
2
 /2R)	 k = 2/c	 (4.2)

Here, by Eq. (1.9) ,

NS = B 0AT/47TR2V2	 (4.3)

is the average total number of photons received during the interval

(o , T) . In order to derive Eq. (4.1), we put B(u) = B 0 6(u - 0 into

I, Eq. (1.8) and use the point-spread function in I, Eq. (1.9), dividing

by 2a 2c to convert to the normalization in this paper.

When the object light has complete first-order spatial coherence,

the first eigenvalue of Eq. (2.12) is v i = NS , and its associated

eigenfunction is

p 1 (r) = A- /2 ^(r, 0)	 (4.4)

The remaining eigenvalues vanish, and as their eigenfunctions we can take

an arbitrary set of functions orthonormal among themselves and to n1(r)

over the aperture A .

For estimates of the radiant power B o and the frequency w 0 of

a point source located on the z-axis Q = 0) , Eq. (2.14) applies, and

a



Helstrom 18

the series for the ambiguity function in Eq. (2.15) contains a single

term,

11(0 1 , 02)	 T_ I v l (p 1)v1(02)

x X(W 	 01) x(w ; 0
2) {' N+ 1 + VW ; e)T_

1 ] 2
 — 4}` x aw /2Tr

-00	 (4.5)

i

For an estimate of

1,2, and after substitu,

with respect to o f = B1

an unbiased estimate 130

radiant power B 0	vl(0i) = (Bi/B 0 ) v i , i a

Lion into Eq. (2.9) and the differentiations

e2 = B2 , we put B 1 = B 2 = B O . We find that

of radiance has a relative mean-square error

bounded below by

E(B 0 - B 0 ) /B02 z [ N Sf1(.a)I-1 	 ,	 (4.6)

where f 1(.B') is given in Eq. (3.4) , but 	 is now

.0 = NS /NWT	 (4.7)

Before integrating, we have again passed to the quantum limit and set

Ar << 1 , NS /WT <<1 in Eq. (4.5). The graphs in Fig. 1 apply with M = 1.

For an estimate of frequency, v 1 (a 1 ) = v 1 and X(w ; ei ) =

X(W - W i ) , i = 1,2, with w 1 and w 2 set equal to w 0 after the differ-

entiations in Eq. (2.9). We find in the quantum limit,

E(W 0 - w 0 ) 2 /W2	(NSf2(2)))]-1 ,	 (4.8)

where f 2 () is given by Eq. (3.10) and graphed in Fig. 1. 'Thus the

approximate lower bounds on the mean-square errors in estimates of

absolute radiance and frequency obtained in Section III for M >> 1 be-

come exact for point objects if M is set equal to 1.
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Estimation of Position

The coordinates (ex 	 y, ) = c of the point source in the plane

z = R can be estiiiiated independently when the aperture is circular and

tho object is located near the optical axis. It is now necessary to

evaluate the coeffi.cionts

ukmQVi ) _

(NcT /Ii) 	 nk''^ (r	 ^s (x' 1 , r 2 	N i ) nm (r2 ) d2rld2r2
AA	

= 1, 2	 (4.9)

of the expansion_ in Iq. (21 .13) . Aftor the ambiguity function is sub-

stituted into Eq. (2.9), we shall differentiate these coefficients with

respect to e.or e. (i = 1, 2), and set eix

We find from Eq. (4.1)

Pkm(Ei) = NS ek (F i ) em (Eli)	 (4.10)

ek (E i ) = A
-/2 

nk*(r) E (r, E i ) d zr .	 (4.11)

A

In particular, from Eq. (4.4),

f

e l ( e i ) = A- Jet," (r' Q) 6(r, e,) d2r = `1C A* (ci)	 (4 .12)
A

in terms of the Fourier transform

9
A

M = A

	

	 der	 (4.13)
 f

A

of the indicator function of the aperture--see I, Eq. (A4). For a cir-

cular aperture of radius A,

J( A ( E ) = 2(6/1£I) J1(JEJ/6)

1 _ (eX2 + e 
2
)/86 2 + O(,6I

4
/6 4) ,	 (4.14)

t
Y

wr . rr..a.
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where 6 R/ka wid	 0-0	 is t1lu	 ^ I function of order 1.

I a 61	 Iu, (c ) I	 in th-, sun inThe 1,01111	 11
11

(r
l	 il	 1 11	 1

Eq. (2. 1S) will thus, yield 0 after substitution into Eq. (2.9), differ-

entiation, and the sctthig of 	 and	 equal. to 0

Since v 
k	

0, k	 ive can write 14-*q. (2.15) as applied to the

estiiiiation of c	 or c. 
y 

bi the form

11 (c	 [X( ff + 1)	 T

[X(W) (c
km 1 mk 2f	 m=1

jr+ 1 ) N 
S	 2
X(w) T -1 {(,jY+	 [Y+ 1 + N 

S
X(w) T-1)2 

00

x ^ Cu 0; + 	 (c	 dw/27r
k=1 k1 I	 1k 	 Ik 11	 k! -2

+ term a u ll(ed p il (i
: ,^)	 (4.15)

the last term cmitributing 0 to t1ic, bound. As 
in 

Eq. (2.18),

k=1 iu=1

1
(2&tcT/fi) 

2	
d2r d2rf Y, (r l , r	 F,	

S V
(r	 r

1

2, gA(E:2 _ E; 1)12 = 
I
N 

2
N S	

S (1 -	 (4.16)

In addition, we obtain by using the orthonormality of the eigenfunctions

nk
 (r)

k=1

'(2QcWi) fff n l *(r l ) Ys (r,, r, ; e ) y (r
2$ r	 e l)  n 1 

(r12	 S3
AAA

X d 
2. 
r 1 d 

2 
r 2 d 

2 
r^	 - 	 -3

I
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"^	 3	 f rr
elf	 0) 2) e(r2 $ Cd e*(r 3 2 ed

AAA

X U) d" r	 IV

N
c.d ^A(e d '6

2	 2	 1 1 2
14 (1	 e, 1 /86	 t;	 /86	 k	

2C 	 8 0'	 (4.17)S

Men those are put into Lq. (4.15) and the result into Eq. (2.9), we find

Y	 Y

2T N& -
S	 1X(W) I I AP( X + 1) + JV +	 N SX(w) T_	 dw/27}-

(4.18)

In the classical limit ) P >;> I this becomes

4(A
e 
X - 

C X)	 2 (JVIN S) WT	 (4.19)

as 
in 

Eq. (3.13) 
in 

which q)(a) - I because the object light is com-

pletcly coherent 
in 

first order.

In the quantum limit, on the other hand, V<<1	 NS /WT  << 1

the bound becomes

E, ( ex — F X	 N S [f 3 (0))	 (4.20)

where

f 3 
(01) = f 1 (.072).	 (4.21)

	

The function f 3 (.D7) is plotted versus	 in Fig. 1 for the Lorentz

spectrum in Eq. (3.7).

The position of a point source might be estimated by focusing its

light on a photosensitive surface and processing the numbers of photo-

electrons emitted from each
I

of many elements of the surface. The joint

probability distribution of these numbers would be maximized with respect

to the parameters e X and e 
Y 

to provide maximum-likelihood estimates.

The mean-square error of such estimates has been calculated 17 ; in our

present notation it is

. , _ARM_
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E	 E(ly	 L
Y

18 -A 	 64)- (1	 7.16AN 
8 
D

where n. is the quantum (,,JT1eioney of the surface,

(4.22)

0 -'- Yj ^ I . It was

assumed that the objcct light is much iveakr than that from the back-

ground, but that this wcalQiess is compensated by a long observation time

T - 
In 

addition ) the spoctiuii was taken as rectangular of width W .

In the currespending circLuiistances, our bound in Lq- (4-19) becomes

6 2/NS .E
C x - 

Lx)    	 Y y	 (4.23)

which lies below tho mean-square error given by Eq. (4.22). General

Cramer-Rao bounds 
on 

the wean-square error 
in 

estimating the position

of a stellar image 
on 

a photosensitive surface Dave been worked out by

Farrell, with numerical results for images with a gaussian pattern of

illuiiinance. 18 
The difference between those essays and the present one

Lies in the nature of the priiiiaTy data. There the data are numbers of

photoelectrons emitted from the image plane; here they are the values of

the electromagnetic field at the aperture of the optical instrument,

whatever it may be.
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V. Estii-nation for Circular Objects

A quashiionochromatic circular object of Luiifoi,.q radiance B 
0 

and

radius b is centered at (0, R)	 Its light falls on a circular aper-

ture of radius a	 We seek lower bounds on 
the mean-square errors in

unbiased estimatos of its radiance B, and its frequency w0 * The

spatial part y S (r 1. r 2 ) 
of the mutual copier, ence function of its light

at the aperture, is, by (I), Eqs. (1.8) and (1.9),

S
(r l , r 2 )	 ( B /ftsl 

4- 
C112 ) exp [ik
	 2- -

 
r220 	I

x f ex-fik u - (r - r 1 ) d 2 UJO u- - -2	 ] -
(5.1)

where 0 denotes the circular object.

The integral equation (2.12) can now be identified with the two-

dimensional one studied by Slep-Jan. 
19 

The eigenfunctions of Slepian's

Eq. (12) are

,kW	 (ax) exp(-ika 2 x2 
/2R)	 (5.2).	 k

and the eigenvalues are

x k = ( a2 / 4 ) v k IN 
S 3 	 (5.3)

where a = kab/R is equivalent to Slepian.'s parameter c 	 The kernel

of Slepian's integral equation (12) is

KC 
(x) = (a/27T)

2
	ex'p(iaz-x) d

2 z
	 ( 5.4)

C

where C denotes the tv,, it circle.
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t

In t

estimates

E (Bp

E (!^ 0

he quantum lay

B o and w o

- B O ) 2 /B 0 2 z

_ w n ) 2 /W2 z

)]it X<< 1 , the mean-square errors in unbiased

of radiance and frequency are bounded below by

[ NS Vi (a; $) l -^	 (5 <,"

with

.tJ = NS IdYWT ,	 (5.7)

where b,,,r Eq. (2.15) , (3.8) and (3.10) ,

CO

^1 (a .Q) =	 (V INs ) f i (vk28INS ),	 i = 1, 2 0	 (5.8)
k=1

the functions f1 ard f2 being given by Eqs. (3.4) and (3.10).

When a single eigenvalue is significant, we get the bounds in Eqs. (4.6)

and (4.8); when M >>1 , those in Eqs. (3.5) and (3.9) appear.

The twelve largest eigenvalues ak • have been tabulated by Slepian19

as functions of a . 20 For values of a missing from the tables we

calculated the eigenvalues by Lagrange's interpolation formula applied to

kn(-Rn Ak). The eigenvalues of higher order are small, and for them the

approximations

f l Gk ZINS ) = vk &INS  	 (5.9)

f 2 Gk .&INS ) = Vk&/2 NS	 (5.10)

can be made. Indicating by a pri-e the summation over these remaining

eigenvalues, we write their contribution to q)1 (a;.B) as

A ^U1 (a; .^_) = ^^ Gk INS ) 2 .^'	 (5.11)

a similar formula holds for o V2 (a; .^' )

We observe that the squared spatial factor 	 2 is given by Eq.

(2.17) and (III) , Eq. (5.10) as
}

v. .
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[^)]_	 (Vk

/NS)2

k=1
and this we have calculated from (f), Eq. (3.10) . 16 By summing the squares

of the eigenvalues given in Slepian's tables, Multiplying by ( 4/a2)2

and subtracting from [ J, (a) ] 2	 we can evaluate if (vk /NS )2 in Eq.

(5.11) and thus supply approximately the missing terms in Eq. (5.8).

By this procedure the functions V i (a;.& ) , i = 1, 2 have been

calculated for three representative values of .0'= N s/,rWT ; they are

plotted versus a = kab/R . A.Lorentz spectrum teas postulated. The

curves show that the larger .a (the smaller A') ,  the less sensitive

the bounds are to the number M of spatial degrees of freedom of the

object light at the aperture.

i

x
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Appendix A

Derivation of Bounds

The translation of Eqs.	 (2.10) and (2.11) into forms involving the

field at the aperture is effected by means of the function

L(ri, t l ; r^, t2 ; 8 1 ) = L (r', t	 ; r' , t
1 ^1	 1	 ~2)

_I

(h/2)	 (wk W M ) 2 LIm(61) uk
(X1) um(r2)

k m	 a

X exp ( —iwit t 1 + iwmt 2 )	 (Al)

- -cf. III, Eq. (4.3)--and the associated operators

L 1 ( 1 ^ 2) - Z' ^ 0k*(1) Lkm(e 1 ) Om (2)	 (A2)

k m
and .0 1 (1, 2)	 respectively defined like Q(1 9 2) and 2 (1 9 2) of

III, Eqs. (4.2) and (4.5).

We observe the similar structures of Eq. (2-.11) and III, Eq. (2.7)

and conclude by a derivation of the same type as in III, §IV that the

lanction L 1 (ri, t l	 rz, t2 ) is the solution of an integro-differential

equation of the same form as III, Eq. (4.7),

2Y (r T^ tl i r',t 2 ) - 1C (1 9 3) Y(r l , t3	 ; r2, t2 i 6)

+ •C l x (39 2) y ( ', t l ; r3, t3 ; e ) +

2L (3, 4) Y(r' , t ; r' , t ; e) Y(r' , t ; r' , t ; 6) .	 (A3)
1	 w1	 ^4	 4	 -2	 2

Furthermore, we can use Eq. (A2) and III, Eq. (4.10) to write Eq. (2.10)

as

H(61, 8 2) = I I Lkm ( 6 1 ) Ymk ( e 2 ) —
k m

G G Lkm(81) 
O (2) Ok*(1) Y(r2,  t 2 ; r', t l ; 62)

k m ^w	 w
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L^(i, 2) y (r	 tf	 rl, t^	 02)

T
f f
'.,

c / ) oQ dt l dt	 d-rldr2
AA

X [L W, t l ; r', t 2 ) (n.V) (n.V )

- n.V l L^(r, t l ; r 	̂ t) (n.V,^)
— n.V 2 L l (r i,  t l 	rI t) (n.V 2 )

(n.V l ) (n.V) Ll(r1$ tl	 rl ^ t 2 ) Y(rl^ t	 rig t l	 e2)
zl=z2=0

(A4)
where n is a unit vector normal to the aperture.

Because of Eq. (1.4), we can argue as in ;III, Section IV that the

function L1 has the form

L 1^ r l' t l ' r2' t z ) - LI( r l' t l ' r2 , t2)

x exp[-io(t 1 	 t2) -jsS ( z I - z 2 ) /c]	 (A5)

and that we can put for the mutual coherence function of the thermal

background light

Y	 (rl,	 tl	 r', t^)

Y1(r t l 	r2 , t2 ) exp[-iQ(t l - t 2 ) -iSZ(z l - z 2 )/ c 1	 ,	 (A6)
0	 1

yf ( r l ,,	 t l	 r 2 , t2)

(Ti/2Qc)	 )Y(Q)  6 2 (r 1 - r2 )	 S(t l - t2 ) (A7)

where	 JV' = jr(Q)	 is given by Eck.	 (1.10). At this point the assumptions

are again being made that the diameter of the aperture is much greater

than the correlation length	 (Tic/K7)	 of the thermal light, and that

the bandwidth	 W	 of the object light is much less than the effective

bandwidth	 KT /t	 of the thermal light.

Eqs . (A3) and (A4) can then be simplified to read
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y s' (r l , t l ; r , tM ; t l ) - (S^c TO	 dt^	 d2
 f
A

X (L (r 	 t l , r 3 ^ t) Y I (r 3 , t 3 ; r 2 , t2	 Q) +

Y
I
(r,, t l ; x , t3 ; 0) Li (r3, 

t3 ; r2' t2)^ +N

T T
(Nc/,h) 2	 dt 3 ^^dt	 d2r3d2r4

0	
N	 N

AA

X yl (r l , t l	 r 3 , t 3 y 0 ) Li(r	 t 3 s x 4 , t 4 ) Y'(r
4P
 t

4
	 r2* t2	 e)

(A8)
T T

H(O l ,6 2 ) = (Mc%i)2dtl dt2
d2r l d2r2 fff0fo 	

AA

X Li(r l , tl	 r2, t2 ) Ys (r	 t2	 xl^ t l	 e2) I	 (A9)

where

Y,(rl' t
l ; r2 , t2 ; 6) = Y OI (r 1) t  ; r2 , t2 ) + YS(r l , tl ; r 2 , t2

(A10)

The temporal stationarity of the lz.ght fields and the great length

of the observation interval (o, T) as compared with the reciprocal

bandwidths of object and background light permit us to replace the tem-

poral part of Eq. (A8) by Fourier transforms. As a result, L I (r l , t l ; r,,, t2)

will to good approximation be a function only of t l - t2	 and it will

have a Fourier transform L l (r l , r2 w) defined'i as in Eq . (1,S). Eqs .

(A8) and (A9) can now be rewritten as

(S(rl, r2
	 w ; 8)

(2c /-h)	 d 
2 
r 
3 

[L l (r l , r 3	 w) ^(r 3 , r2 	 W; e) +

A	
,D(rl3, r3 ; 

w; e) Ll(r3  r2 ; 
w)]

.,N --- .:_...._
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+ (2Wc/fi) 
2	

d 
2 
rid 

2 
r ^(r l ^ r	 w; 6) L 1 (r,, r4	 w) ^(r4) r2	 w; ®) ,

AA	
(All)

and

"	 H(e1, 6 2 ) = (26'lc/_ri) 2 T fm (dw/2ff)	 d2rld2r2

AA

X L 1 ( r i P r2	 w ) S (r... r l ; w; e 2 )	 (Al2)

where by Eqs . (A6) , (A7) ,

s^(r l , r2	 w; 6) — ^bS (r l , r2 ; w; 0) + 4) 0 (r l , r, ; w)
1.

0 (r1' 
r2 ; w)	 (Ti /2Qc) A (P) 6 2 ( r l — r2 )	 (A13)

We now expand all :Ewictions in terms of the orthonormal eigenfunc-

tions nk (r) of the two-dimensional integral equation (2.12). In par-

ticular, we write

CO	 w

L1(rl$ r 2 ; w) = I	 Z Xkm(w ; 6 1 ) nk (r 1 ) 71m*(r2 )	 (A14)
k=1 m=1

4)S (rl , r2 ; w; 6i) =

(h/2QcT) X(w ; e i )

CO	 CO

x

	

	 X ukm ( e i ) nk ( r 1 ) nm*(r 2 )	 i = 1 1 2 1 	(A15)
k=1 m=1

and by Eq. (A13) and the closure property of the eigenfunctionsnk(r)

0 (r 1 , r2 ; w) = (K/2Qc) Y(SI)

	

	 nk(r1) nmx (r2)'	 (A16)
k=1

When these are substituted into Eq. (All) and the orthonormality

of the eigenfunctions is used, the equation

(3"i/2QcT) 
km 

(e 1 ) X(w, e 1)

Akm(w; 6
1 ) {Y + 1(v

k 
+ vm) X (w; 6) T_1

+ [X + vk 'X(w; e) T -1 ] [ JY + v  X(w; e) T 
1
j}	 (A17)

F

f

r

f
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is obtained. From it we, get the coefficients akm(w;o^) 	 which are

substituted along with Eqs. (A14) and (A15) into Eck. (Al2) to obtain

Eq. (2.15).
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,XppondiX B

The Bound in the Absence of Background

in the absciice or any background light, the integral equation, Eq.

(All) , when written for an estianate of absolute radiance B 3 , is

(Bl /B^) 41	 r2r2	 w+ BO)

(6zc/,i)	 d 
4 
r 

3 
(L l (r 1 , r3 ; w) (D S (r 3 , r2 ; w; B 0 ) +

A

	

!s (r1 1 r3	 W ; B 4 ) L 1 (r3 , r2- ; W) ] +

(Nc/b) 1	 der d 2 r	 (r	 r	 w• B) L (r , r ; w) % (r , r ; B )

AA,
(BI)

we have put 0 1 = B l , 0 2 = B2 , e = B o 	This equation can be solved by

iteration; its elution takes the farm of a series,

L 1 (r 1 , r2 ; w) = (B 1 /B O ) f (rl/20e) 6 2 (r 1	 r2)

(DS (r l , r2 ; w; B 0 ) +

(20c /,h) 	 4)s (r l ) r ; w; B,) ('S	
z

(r, r2 	 w; Bp) d 	- ...}	 (B2)

A

as can be verified by substituting it into Eq. (B1). The ambiguity

function is now, by Eq. (Al2) with (D S ( r2 , r1 ; w; B2 ) 	 (B2 /BO)

x 4)s (r2 , r1 ; w; Bo)p

H(B l , B2 ) = B0 - 2B1B2(2SZcT/-i)

	

x { S (r, r	 w; Ba) d 
2 
r

A

(252c%) s 
( rl r2 ; w; B^) ( 2 d2r 1 d 2r2 + ... } .	 (B3)

j
AA



0

Ifelstrom 32

Using Eq. (1.6) with. 0 = B O 0 the definition of the nunber M of spatial

degrees of frcudom, Lq. (2.17), and the definition of the bandwidth w

Eq. (1.8), we finally obtain

H(B jv B 2 ) 	B0.

	

0 
B 1 B 2 N S [I - (Ns j)AWT) +	 (B4)

Mien this is substituted. into Eq. (2.9) and the result into Eq. (2. Vii) ,

we find the lower bound
2	 2

E(B 
0 - BO) 1B 0	

N S (I + (N S /MWT) +	 (BS)

When MWT >> NS . this reduces to the result in Eq. (3.5) with f 1 (-8) - 1.

A similar derivation can be carried through for an estimate of

frequency ca n P but not for an estimate of position.

S

- I
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Figure Captions

Fig. 1. Functions fi (,8), i = 1, 2, 3 , appearing in lower bounds on

mean-square errors in unbiased estimates of absolute radiance, frequency,

and position, versus .& = N S/^WT	 Dashed curve: rectangular spectrum;

solid curves: Lorentz spectrum.

Fig. 2. Bounding functions 'Ui (a; .8) for mean-square errors in estim?^.t^:s

of radiance (i = 1j and frequency (i = 2) of a circular object of uni-
form radiance, versus a = kab/R . -Cr" = NS /JYWT = 0.1 0 1 9 1,0.

r^wn.rwr^rr^
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